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Microcanonical Variational Transition-State 
Theory for Reaction Rates in Dissipative Systems 
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Upper bounds for the classical escape rate of a particle trapped in a metastable 
well and interacting with a dissipative medium are derived based on the periodic 
orbits of a reduced two-degree-of-freedom Hamiltonian involving the unstable 
normal mode and a collective bath mode. It is shown that even in what is 
usually thought of as the spatial diffusion limit the reactive flux can involve an 
energy diffusion term due to energy transfer from the dissipative media, in 
addition to the standard spatial diffusion term. 

KEY WORDS: Escape rate; transition-state theory; Langevin equation; 
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1. I N T R O D U C T I O N  

There  has been a recent  push  to unde r s t and  react ion processes in solu t ions  
and  in solids at  the mic roscop ic  level. (1 3t Such processes are general ly  
classified by the s t rength of in te rac t ion  between the system reactive mode  
and  the diss ipat ive  medium.  As first de ta i led  by Kramers ,  (4~ in the weak 
coupl ing  l imit  the reac t ion  rate  is energy-di f fus ion-control led ,  whereas in 
the s t rong  coupl ing  l imit  the reac t ion  ra te  is con t ro l led  by spat ia l  diffusion. 
K r a m e r s '  p ioneer ing  approach ,  however,  is not  general.  His solut ion,  as 
well as subsequent  beautiful  formal  deve lopments  such as tha t  of Me l ' n ikov  
and  M e s h k o v  (5~ (for a recent  review see ref. 1), rely heavi ly on the 
Langevin  equa t ion  of  mot ion ,  recast  in terms of  a F o k k e r - P l a n c k  
equat ion.  (6) Such theories have two ma jo r  l imitat ions.  Firs t ,  it is clear 
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today that memory effects are important, (7 ~3) and one should replace the 
Langevin equation by a generalized Langevin equation (GLE) which 
includes memory effects. However, a two-dimensional Fokker-Planck 
equation cannot be derived in general from the GLE, necessitating a new 
and different approach to the problem. Second, it is well understood that 
even a GLE is not sufficiently general. A GLE implies that the dissipative 
bath is harmonic and that the system bath interaction is bilinear. (1~16) 
A realistic liquid is not harmonic and so the true validity of the Kramers- 
based approach when dealing with reactions in liquids is unclear. 

An alternative theoretical approach is based on (classical) transition 
state theory (17'18) whose formal development has reached maturity during 
the past three decades. (1'2'19~28) Originally, application of the theory was 
limited to isolated reactive processes such as bimolecular collisions or 
unimolecular dissociations. The rigorous applicability of transition-state 
theory to reactions in condensed phases was first demonstrated by 
Chandler, (29) who showed that the conventional (canonical) multidimen- 
sional transition-state-theory expression for a reaction in a dissipative 
medium can be written in the form of a one-dimensional transition-state- 
theory expression. In this one-dimensional expression the barrier height of 
the potential along the system coordinate is replaced by the barrier height 
of the potential of mean force (free energy of activation) aloang the same 
coordinate. (29) The potential of mean force is a well-defined object even 
when the system-bath and/or the bath-bath interactions are highly non- 
linear. The only restriction imposed by using Chandler's one-dimensional 
expression is to limit the choice of dividing surface to one-dimensional 
functions of the system coordinate. Since the accuracy of transition-state- 
theory rate constants depends critically on the choice of dividing surface, 
such a severe constraint can lead in some cases to gross overestimates of 
the rate. (28) 

Chandler's original result has recently been extended by replacing the 
potential of mean force with a free energy of activation surface in more 
than one, say n, dimensions. (3~ The resulting expression is then an 
n-degree-of-freedom ti'ansition-state-theory rate expression in which the 
dividing surface may be written as a function of these n dimensions, rather 
than as a function of just the one-dimensional system coordinate. Such free 
energy surfaces have been utilized in different contexts, including studies of 
reactive dynamics in solution. TM 34) For a GLE, because of the harmonic 
nature of the bath and .the system-bath interaction, it is possible to obtain 
an analytic expression for such a free energy surface. (3~32) The canonical 
variational transition-state-theory (CVTST) rate expression for dissipative 
systems described by GLEs which is given in refs. 31 and 32 is a specific 
case of such a two-degree-of-freedom variational transition-state-theory 



Reaction Rates in Dissipative Systems 977 

rate expression, and it involves a two-dimensional free energy of activation 
surface. This two-degree-of-freedom CVTST expression is equivalent to 
canonical variational transition-state theory of the full dissipative problem 
under the restriction that the dividing surface is a function of only two 
coordinates. In the CVTST method these two coordinates are specifically a 
collective reaction coordinate and a collective bath mode, as defined in 
Section 2. Additional restriction of the dividing surface to be linear allows 
one to demonstrate how this method leads to the well-known spatial diffu- 
sion-limited rate expression as obtained by Kramers, Grote-Hynes, and 
others. (4'35-37) The CVTST rate expression is more powerful than previous 
methods, since it allows an easy extension of theory beyond the steepest 
descent approximation which is inherent to the Kramers approach. (It 
should be stressed that several authors have estimated corrections to the 
steepest descent result (38-42~ using other methods.) 

The effective two-degree-of-freedom Hamiltonian of the CVTST 
method, which is made up simply of the two-dimensional free energy of 
activation surface plus a two-dimensional kinetic energy term, can be 
thought of as providing a first-order approximation to the dynamics of the 
full problem (see the associated equations of motion(3~)). It is therefore 
tantalizing to understand how far one can go by considering only the 
dynamics of such an effective Hamiltonian, ignoring the rest of the bath. 
For an isolated Hamiltonian, a better estimate of the canonical rate con- 
stant than the CVTST result can be found by optimizing the dividing sur- 
face at each total energy instead of at each temperature. (24'43) In this case, 
the reactive flux is calculated as a function of total energy and Boltzmann- 
averaged to yield a canonical (temperature-dependent) result. This proce- 
dure is called microcanonical variational transition-state theory (#VTST). 
The pVTST rate constant at a fixed temperature must be less than or equal 
to the CVTST result, and hence, by the bounding properties of transition- 
state theory, (22'24'43) it will be a better result. In fact, for an isolated two- 
degree-of-freedom Hamiltonian it can be shown that, in some cases, 
#VTST gives the exact result. (44) Implementation of pVTST for this "size" 
Hamiltonian is particularly straightforward, as it is known analytically that 
the optimized fixed energy dividing surfaces are given by classical periodic 
orbits, i.e., pods (periodic orbit dividing surfaces), (24"26'43'44) which are 
relatively simple to find numerically. Thus, for the dissipative system, in the 
first approximation where only the effective two-degree-of-freedom 
Hamiltonian is considered, the gVTST result (using the pods) gives a 
better estimate of the rate constant than does the CVTST result. 

However, the effective two-degree-of-freedom Hamiltonian is not the 
full problem. While the CVTST result for the reduced dimensionality 
problem is equivalent to that for the full problem, this is not true for the 
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microcanonical result. The purpose of this paper is to explore the validity 
of an approximation to the rate based on the pods of the effective two- 
degree-of-freedom Hamiltonian. Although the analysis in this paper is 
restricted specifically to dynamical systems described by GLEs, the struc- 
ture of the theory will be the same for anharmonic systems, allowing the 
methodology used here to be generalized. For this purpose, we derive a 
#VTST expression which is based on the effective two-degree-of-freedom 
Hamiltonian (or, equivalently, on the two-degree-of-freedom free energy of 
activation surface), but which is exactly derivable from the multidimen- 
sional #VTST expression for the full problem. By using an exactly 
derivable expression, one preserves the bounding properties of transition- 
state theory, so that, as in CVTST, an upper bound to the rate constant 
for the full problem can be found by solving the reduced dimensionality 
problem. 

One of the new physical aspects of the derived #VTST expression is 
the emergence of an energy diffusion term which is important in what is 
usually thought of as the spatial diffusion limit. Even though in this limit 
the reactants are in thermal equilibrium, the energy diffusion mechanism 
is important because energy transfer from the dissipative medium to the 
effective two-degree-of-freedom Hamiltonian can cause crossing of the 
transition-state dividing surface. This energy diffusion mechanism is most 
prevalent at very strong system-bath coupling strengths, that is, in the 
Kramers "spatial diffusion regime." This energy diffusion-induced crossing 
of the transition-state dividing surface should not be confused with the 
Kramers "energy diffusion regime," which occurs at very weak system-bath 
coupling strengths, when energy transfer is limited. In the Kramers "energy 
diffusion regime," population of reactant states with energies greater than 
the barrier height is the rate-limiting step, and hence the reaction in this 
regime is energy-diffusion-controlled. In this regime transition-state 
theories will overestimate the true rate. In contrast, the energy transfer 
from the dissipative medium to the reduced dimensionality Hamiltonian in 
the /~VTST formalism is a mechanism for crossing an (energy-dependent) 
transition-state dividing surface. It is particularly important in the limit of 
strong coupling, where energy transfer is large. 

In Section 2 the canonical theory is reviewed, setting the stage for 
Section 3, in which the microcanonical theory (#VTST) is derived. The 
underlying physics and other consequences of this derivation are discussed 
in Section 4. 
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2. REVIEW OF CVTST 

In order to derive the dissipative CVTST, we started with a model 
Hamiltonian from which a generalized Langevin equation--  

rncl= dV(q) mj~dvT(t_Z) dl(~)+~(t ) (1) 
clq 

where q is the reactive system coordinate with mass m and potential V(q), 
7(t) is the friction kernel, and ~(t) is the Gaussian random force--can be 
derived without invoking linear response theory (and all associated 
assumptions).(14,15,45,46) This Hamiltonian is 04'15) 

j 2 +mj cojxj-- (2) 
mjcoj/ A 

where q is coupled linearly to a bath of harmonic oscillators with coor- 
dinates xj, masses mj, and frequencies coj. Performing a normal coordinate 
transformation on H at the saddle point 4 allows one to write 

H=~ p~ Z(pyj+2~y~) +V, m 1,,2 UooP+2ujoy j (3) 
J J 

where the reaction coordinate p is associated with the unstable mode of 
frequency )v ++, {y j) are the remaining normal coordinates with associated 
stable frequencies {2j}, and the Ujo are elements of the orthogonal normal 
mode transformation such that x/mq=uooP+5",jujoyj. Note that the 
unstable mode frequency and the transformation coefficients depend upon 
the system-bath coupling coefficients and, in the limit that the number of 
bath modes goes to infinity, can be written as functions of the friction 
kernel 7(t). ~31~ The anharmonic part of the system potential, V~, is defined 
by 

V~(q) = V(q) + �89 2 (4) 

where co t is the frequency associated with q at the saddle point. We also 
define the barrier height along q to be V $ and the frequency along q in the 
reactants well to be co o . 

In transition-state theory the rate constant is directly related (by a 
normalization constant) to the flux through a dividing surfaceJ 19 28.44) 

4 As shown by Graham,  (5~ elucidation of the normal  coordinate p does not require introduc- 
tion of the Hamil tonian equation (2); p can be found directly from the GLE, as can a 
corollary of the collective mode a [Eq. (8)]. 
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Because this normalization is simply the reactants partition function, a 
well-known equilibrium quantity, we initially confine our attention to the 
calculation of the flux. For a general dividing surface in configuration space 
[f(p, y) = 0]  the canonical flux for the Hamiltonian, Eq. (4) is 

foo F cvTsT -- @p dp I-I dpyj dyj 6[f(p, y)] [ g f .  p] O[Vf. pl e x p ( -  fill) (5) 
--oo j 

where 6 is the Dirac delta function and 0 is the Heaviside step function. 
With little loss of generality, one can choose the dividing surface to 
have the form f =  p - g ( y ) ,  so that the component of the momentum 
perpendicular to the dividing surface is 

(~g  ~2]1/2 
v. ,>=L,++v<:  j {61 

~g =(.o-z=.D 
k j o& / 

Here, h~ is the unit normal to the surface. As shown previously, (3~) 
the expression for the CVTST flux can be considerably simplified by (1) 
introducing 

ff~.(1/bll) E UjoY j and p~=-(1/ul) ~ ujop, (8) 
J J 

where u 1 =-(1 - u :  )1/2, and (2) restricting the dividing surface to the (p, a) 00 
space. The result is the two-dimensional expression 

FCVTST =Fo f dpp dp~ dp da (p" h,) 0(p" n,) 
k 2n / 

[ (d ?]lJ2 
x 6[p-  g(a)]  1 + t, daJ _] e x p ( - f l H * )  (9) 

Here H ~ is the effective two-degree-of-freedom Hamiltonian 

1 1 2 1 -2 2 1 ~.~20. 2 H*=~p2+-~po--~2 ~ p +$ -~- gl(p, o" ) (10) 

o 2  _ ~,~ u~ 
~ j(U~o/,Z~) = U~o/,~ .2 - 11~ ~2 (11) 

which depends, through ,U, /2, and V~, on the friction kernel. (31,48) As 
shown in ref. 30, this effective Hamiltonian may be termed a "free energy 
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Hamiltonian," since it is obtained by a constrained canonical average over 
all coordinates and momenta of the system keeping the two collective 
modes and momenta (p, a, Po, P~) fixed. For the GLE, because of the har- 
monic nature of the bath, this constrained averaging reduces to Gaussian 
integrals which can be solved analytically. For a more general and realistic 
description of a liquid, such a free energy Hamiltonian may be obtained 
numerically using standard Monte Carlo methods/3~ 

The prefactor Fo in Eq. (9) is the canonical flux as calculated from 
conventional ( f =  p = 0) harmonic (V~ = 0) transition-state theory, i.e., 

Fo = (1 : )  

The harmonic flux /;o can be equated to the canonical flux as calculated 
from the Grote-Hynes theory, (z36) as shown in ref. 47. Also, the frequency 
2* is equal to the reactive frequency of the Grote-Hynes theory, (36'47) so 
that 

2 *2 = cot2/[1 + ~(;,*)/~++] (13) 

where "2(s) designates the Laplace transform of the friction kernel 7(0 
[Eq. (l)] .  

3. tJVTST 

At each energy E ~ of the effective two-degree-of-freedom Hamiltonian 
H ~ [Eq. (10)] the optimum dividing surface is given by a pods, which we 
denote as fE~(P, a ) =  0. Because H* is a first approximation to the full dis- 
sipative problem, it is likely that these pods also provide a set of optimal 
(or at least good) dividing surfaces for the full problem. In this section we 
show that the set of pods for H ++ can indeed be used to provide a rigorous 
upper bound to the canonical rate constant for the full problem. 

In/~VTST, then, microcanonical refers explicitly to the optimization of 
the dividing surface at fixed "reduced" energy E*, rather than at fixed total 
energy. For an infinite bath, the total energy of the bath remains effectively 
unchanged by energy changes in H ++ (or any other effective Hamiltonian 
with a finite number of modes), and thus the total energy of the system 
plus infinite bath is irrelevant for understanding the reactive process. 
Hence, the only sensible end result is a canonical rate constant which, 
in /~VTST, is based on the "reduced"-energy-dependent pods of H*. The 
set of pods of H ~ at all energies E* can be considered to comprise a 
single dividing surface which is now a function of (p, a, E*), that is, 
f (p,  a, E~) =0.  In phase space this becomesf(p, or, H+~) = 0. The expression 
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for the canonical flux of the full problem using this microcanonical dividing 
surface is 

foo F ~v'rsT = dpp dp l~ dpyj dyj 6[f(p, a, H;)]  [Vf" p] O[Vf" p] exp(-f i l l )  
--co j 

(14) 

where it must be remembered that the generalized velocity p has 2N+ 2 
components (N being the number of bath oscillators), all of whose time 
dependence is determined by the full Hamiltonian (not by H*). For the 
gVTST dividing surface the momentum component perpendicular to the 
dividing surface, Vf. p, becomes 

vf.p Op / PP+ O~ J j ay: 

of oI4* of ot r*rOp  
-~ OH* @p 1)p + Pyj (15)  I-I* "7 Opyj 

Making use of Hamilton's equations of motion for the full Hamiltonian H 
and the definitions of a and p~ [Eq. (8)] yields, for the momentum 
orthogonal to the dividing surface, 

0s e e (0-*  

Of Of Sf [1 ] -@ pp+--~ap~+-~-i~ -~ ~ Ujo(f22--2})yj po (16) 

The third term on the RHS arises because the a mode can have its energy 
increased by the bath when propagated by the full H, but not when 
propagated by the isolated H*. Thus, the third term accounts for motion 
through the dividing surface caused by energy diffusion from the bath to 
H* via a, It is useful to define a new energy diffusion coordinate ~q such 
that 

(17) 

The flux normal to the surface f, Vf. p, now depends only upon the coor- 
dinates and momentum of H* and the energy diffusion coordinate ~ .  

Following the CVTST derivation, (31) we introduce the Fourier expan- 
sions of three delta functions (one more than in the CVTST derivation) 



Reaction Rates in Dissipative Systems 983 

into the flux expression [Eq. (14)] and switch the order of integration to 
get 

F ~vwsx = f dp dpo da dp~ d~ 6[f (p ,  ~, H*)] ]-Vf" p] O[Vf" p] 

[-p2p 1 ~+2 2 

and 

where 

I(s) =-1 Re[R(is)] (23) 
S 

1 p p (24) K(P) = u---~ p2 + p~(p) _ e),2 (p2 _ 2,2) 

where G stands for 

J 

xexp -gE(py ,+22y2)  +#c ~ r - - E u j 0 5  
Ill 

1 

Carrying out the Gaussian integration in Eq. (19) yields 

G=2~- jlTI~-~vexp[-~(p2 j\~-7-0-Sj exp( fl~e2~2Af22j (20) 

where zlf22 is defined by 

_@_'0 ,~2 __ D2 A(22 -~ ~ u~ j (21) 

The first term in Eq. (21) can be related to the parameters of the 
generalized Langevin equation via the spectral density function I(s) of the 
bath stable normal modes [{yj} of Eq. (3)], (49) that is, 

2 

u]~ 22 ds s3I(s) (22) 
�9 .21 .21 Jo  
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Thus, Eqs. (22)-(24), along with Eq. (11), allow A~r 2 to be defined in terms 
of parameters of the generalized Langevin equation. 

Next Eq. (20) is substituted into Eq, (18) and the delta function 

1 = f dE* 6(E; - H*) (25) 

is introduced, so that e -~H* becomes e -~E* and Of/OH* becomes Of/OE*. 
The flux then becomes 

F~VTST = fl2Q F~ f d~~ ( fl ) 

where [using Eqs. (16) and (17)] 

F(Er ~ )  = f do dpp da dp~ 6(f) 6(E* - H*) + ~-~a + ~ 

• O [ p p af / af af 
~pp+ P~ ~--g~ + ~E-5 ~ ) ]  (27) 

In order to highlight the physical interpretation of the flux expression, 
we rearrange the order of integration in Eq. (26) and define a total 
microcanonical flux as a function of the reduced energy E*, that is, 

~2 
/ t? ,1/2 [ e x p ( f l ~ - ~ z ) I F ( E * , ~ )  (28) 

Equation (26) now has the standard form, 

,uVTST f12~ C e ~e*F F = Fo ! dE* - tot(E*) 
2To d 

(29) 

For the isolated two-degree-of-freedom Hamiltonian, the microcanoni- 
cal flux would be, instead of Eq. (29), 

F •vTST = f dE* e- f lE*F2D(E* ) (3o) 

where FzD(E* ) =F(E*, Lr = 0). Equations (29) and (30) differ first simply 
by a constant prefactor, which is the same prefactor as appears in the 
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CVTST expression, Eq. (9). More importantly, the total flux f'tot(E~), 
Eq. (28), which appears in the full expression (29), differs from the flux 
Fm(E ~) in the isolated expression (30) by a Gaussian average over the 
energy diffusion coordinate 0~. The flux through the "reduced"-energy 
(E*)-dependent dividing surface in the full problem is increased over that 
in the isolated two-degree-of-freedom Hamiltonian because in the full 
problem energy transfer from the bath to H~--represented by :~--can 
cause barrier crossing (see Fig. 1). Finally, inspection of Eq. (27) shows 
that if 8f/OE ~ = 0, that is, if the dividing surface is independent of energy, 
F(E ~, Z ) ,  and hence Ftot(E+), reduces to F(E ~, 0~ = 0), and Eq. (29) will 
give back the CVTST result for the flux, Eq. (9). 

To make the numerical evaluation of F "vTsT practical, the flux expres- 
sion (27) is further simplified. First, the integral over pp is rewritten in 
terms of p=, where 

Pz=- PP-~p P<~ + ~ 0--~ 

The Heaviside step function O(pz) is then used to change the lower limit of 
integration to zero. Next, the integration over p~ is performed by making 
use of the delta function 6(E + - H~). Integration over pz then yields 

0~) = 23/2 1 dp d~ 6 I f (p ,  a, F( E $, E++)] 

E ~ 

f ( p,~,E ~ ) 

~ ~  Products 

Reac~anls ~ ( 1 )  

P 
Fig. 1. A fixed a slice through a typical dividing surface f ;  (1)illustrates spatially induced 
crossing of the dividing surface at fixed energy E++; (2)illustrates energy diffusion-induced 
crossing of the dividing surface. Only crossings of type (1) occur in isolated systems. Both 
types must be accounted for in dissipative systems. 



986 Tucker and Pollak 

If the dividing surface is restricted to the form 4 

f =  p - g(e, E*) (32) 

(valid for the pods of H*), then the integration over p is simple. The 
resulting expression for the flux has the form of an action integral, that is, 

F(Et,~.)=23/2 dff 1+ ~ + ~ - ~ )  ] [E:-V(g,e)] 1/2 (33) 

The integration is along the fixed-E; dividing surface defined by g(e), 
and ( e < , e > )  limits the integration to the region where E*>~..V(g,e). 
Combining Eq. (33) with Eq. (28) gives the total expression for the energy- 
dependent flux, 

/ ]~ \ 1 / 2  ~ ~ a 2  

• J [E*-V(g'e)]m (34) 

The ~-dependent flux expression in (33) gives back the action integral 
expression for the isolated two-degree-of-freedom Hamiltonian, that is, 

F2D(E;) =23/2 de 1 + \8eJ J [E*- V(g, e)] 1/2 (35) 

when either ~ or 8g/BE * is zero. The pods of H* are the paths which 
minimize the (isolated) flux in Eq. (35). Hence, using the pods of H* to 
make up the energy-dependent dividing surface f for the full dissipative 
problem is equivalent to optimizing Eq. (35) for the isolated flux instead of 
optimizing the full expression, Eq. (34). 

4. D I S C U S S I O N  

Derivation of the /~VTST flux expression for dissipative systems 
[Eq. (34) combined with Eq. (29)] involves no approximation beyond 
those of the initial transition-state-theory flux expression [Eq. (14)]. It 

s The use of Eq. (32) to define the dividing surface precludes the case of a fixed-energy 
dividing surface that is independent of p and a. If such a surface is to be used, one must 
work directly from Eq. (31), rather than from Eq. (33). However, in the spatial diffusion 
limit where the #VTST theory should be most useful, a constant-energy surface is not likely 
to provide a good bottleneck to reaction and would therefore not normally be used. 
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follows that the /~VTST flux expression provides a rigorous upper bound 
to the reactive flux, and can thus be used to provide a rigorous upper 
bound to the rate constant. As in the CVTST result derived previously, all 
effects of system anharmonicity are accounted for and optimization of the 
dividing surface, this time as a function of the energy of the two-degree-of- 
freedom effective Hamiltonian, is also allowed. 

As in all applications of variational transition-state theory, the degree 
to which the upper bound result will approximate the true result will 
depend upon the optimization of the dividing surface. Optimization of the 
dividing surface does not guarantee an exact result, since the optimization 
is invariably performed under some set of restrictions. For example, 
optimization is almost always confined to coordinate space, instead of full 
phase space. Although there are other reasons why transition-state theory 
may not give an exact result, these have been discussed extensively else- 
where, (1'3"24"26'27'43) and do not concern us here. The usefulness of the 
/~VTST result over the CVTST result will depend upon the degree to which 
the pods, which are highly optimized for the isolated system, provide a 
good dividing surface for the full problem. Comparing Eq. (34) for the total 
flux with Eq. (35) for the isolated flux--which is minimized by the pods 
path--we see that they differ by the energy diffusion term, 5 e ~?g/OE;. The 
pods path will therefore provide a good estimate of the optimum dividing 
surface for the total flux [Eq. (34)] when either~g/OE ++ or Y' or both are 
small. 

The gradient of the energy surface, ~g/OE* (at fixed a), will be small 
if the pods change only very gradually with the energy of the isolated two- 
degree-of-freedom Hamiltonian. The value of the energy diffusion coor- 
dinate ~e is governed by a Gaussian distribution around an average value 
of zero. Hence, the narrower this distribution, that is, the smaller the fluc- 
tuations in the energy transfer from the bath to H +* through the collective 
bath mode a, the less important will be the energy diffusion contribution 
to the total flux. The width of this Gaussian distribution is determined by 
the parameter Ag? 2 [Eq. (21)], which is given by the difference between a 
weighted sum of the squares of all (stable normal mode) bath frequencies 
and the square of the frequency of the collective bath mode f2. 

In general, Af22 will vary only slightly with increasing static friction 
?s(0). It is determined more strongly by the general characteristics of the 
spectral density [Eqs. (23), (24)]. An extreme example is Ohmic friction, 
7(t)=q6(t), for which 3g? 2 is infinite [by virtue of the first term in 
Eq. (21)] for any value of the static friction t t. For the Ohmic friction case, 
energy diffusion is unchecked because there is no system-bath frequency 
mismatch, and, therefore, energy diffusion dominates if ~?g/OE* is nonzero. 
For Ohmic friction a nontrivial upper bound to the rate is obtained 
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Table I. The Energy Transfer Width  Parameter A D  z As  a F u n c t i o n  

of the Static Friction a for Gaussian Friction ( W o T o = I O )  ~ 

j/22 ~:2 /22 

0.1 0.0193 0.992 0.0097 
1.0 0.0192 0.921 0.0104 
2.5 0.0192 0.803 0.0119 
5.0 0.0191 0.607 0.0155 
7.0 0.0190 0.453 0.0204 
9.0 0.0192 0.304 0.0294 

10.0 0.0196 0.233 0.0372 

~' The square of the reactive frequency 2~2 and the collective bath mode frequency/22 are given 
for comparison. All squared frequencies are given in units of the bare barrier frequency 
(squared) a92, and the static friction ~ is in units of COo. 

only if the dividing surface is energy independent, and one must resort 
to CVTST. In contrast, for Gaussian friction, 7(t)=(2/n)~/2(~/~D) 
exp(-t2/2z~),  one finds As 2T~) 2, where zD is inversely related to the 
characteristic frequency of the bath motion. For example, to model the 
breaking of a chemical bond of a solute molecule in a highly structured 
liquid, it would be reasonable to assume a reactive barrier frequency of 
1000 cm -1 and an average librational frequency of the bath of 100 cm -~. 
For this scenario, vD--10 in units of one over the barrier frequency 
(cf. Table I), and Af22 ranges from a low of 0.0190 to a high of 0.0196 over 
a variation of two orders of magnitude in the coupling strength, ~. For 
problems with memory friction, the #VTST prescription using pods to 
define the dividing surface Should provide a good upper bound whenever 
there is a large time-scale discrepancy between the reactive system and bath 
motions. 

5. C O N C L U S I O N  

A /~VTST flux expression for reactions occurring in a dissipative 
medium has been derived. This expression is expected to provide accurate 
rate constants for systems in the Kramers spatial diffusion regime. It 
defines an optimum energy-dependent dividing surface by the pods of an 
effective two-degree-of-freedom Hamiltonian which is composed of one 
reactive mode and one Well-defined collective bath mode. The #VTST flux 
expression, when normalized by the reactant partition function, provides a 
rigorous upper bound to the rate constant for any system which can be 
modeled with a generalized Langevin equation. We have shown that, to 
provide an upper bound, the flux expression for dissipative systems must 
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include con t r ibu t ions  from energy diffusion across  the d ividing surface, not  
jus t  con t r ibu t ions  f rom spat ia l  diffusion. The energy diffusion con t r ibu t ion  

arises because  the d iss ipa t ion  in the full p rob l e m al lows for energy trans-  
fer f rom the ba th  to the single collective ba th  mode.  This energy diffusion 
con t r ibu t ion  is not  to be confused with the K r a m e r s  energy diffusion- 
con t ro l l ed  regime at  weak coupling.  The  energy diffusion mechan i sm 
which cont r ibu tes  to the ~tVTST rate  is mos t  prevalent  at  s t rong coupl ing,  
where energy transfer  is large. The  condi t ions  under  which the /~VTST 
prescr ip t ion  using pods  is expected to provide  a useful upper  b o u n d  have 
been discussed.  In  par t icu lar ,  if the pods  change slowly with energy or  if 
there  is a large t ime-scale  d i screpancy  between the reactive and  ba th  
frequencies,  # V T S T  should  provide  a bet ter  es t imate  for the rate  cons tan t  

than  the C V T S T  method .  
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